\*no calculator

- 1. \* Find the area of one petal of the rose curve given by  $r = 3\cos 3\theta$ .
- 2. \*Find the area of the region common to the two regions bounded by  $r = -6\cos\theta$  and  $r = 2 2\cos\theta$ .
- 3. \*Find the length of the arc from  $\theta=0$  to  $\theta=2\pi$  for the cardioid  $r=2-2cos\theta$ .

Use 1-cost = sin20

- 4. \*Find the intersections of  $r = 1 2\cos\theta$  and r = 1.
- 5. \* Find the horizontal and vertical tangent lines of  $r = sin\theta$   $0 \le \theta \le \pi$ .

  Custom Costom Costo
- 6. \* Find the equation of the tangent line to the curve at the given parametric value.

$$x = 4\cos\theta$$
 and  $y = 3\sin\theta$   $\theta = \frac{3\pi}{4}$ 

Larson W.2/30

- 7. Find the arc length  $x = t^2$   $y = 4t^3 1$   $t \in [-1,1]$
- 8. \*Find all the points (if any) of horizontal and vertical tangency to the curve

Larson 10.2/21

$$x = 1 - t \quad y = t^3 - 3t$$

- 9. \*Find the velocity and acceleration vectors if the position vector  $r(t) = \langle \sin(3t), \cos(5t) \rangle$
- 10.\*A particle moves in an elliptical path so that its position at any time  $t \ge 0$  is given by r(t) = (4sint)i + (2cost)j
  - a) Find the velocity and acceleration vectors.
  - b) Find the velocity, acceleration and speed at  $t = \frac{\pi}{4}$ .
- 11.A particle moves in the plane with velocity vector  $v(t) = \langle t 3\pi cos\pi t, 2t \pi sin\pi t \rangle$  at t=0, the particle is at the point (1,5)
  - a) \*Find the position of the particle at t=4.
  - b) What is the total distance traveled by the particle from t=0 to t=4

The pen shaded area lies between their circle and the line 0= 3 b/c the circle is @ (0, 1/2) at the pole you can  $\frac{A}{2} = \frac{1}{2} \int \frac{2\pi V_0}{(-4\cos\theta)^2 d\theta} + \frac{1}{2} \int \frac{\pi}{(2-2\cos\theta)^2 d\theta}$ 

then add the pencil shaded area lies between 0=273 and=11

and the certain 
$$\frac{2\pi V_3}{2\pi V_3}$$
 and the certain  $\frac{2\pi V_3}{4} = 9 \int_{1}^{2\pi V_3} (1 + \cos^2\theta) d\theta + \int_{2}^{2\pi V_3} (1 + \cos^2\theta) d\theta$ 

$$= 9 \int_{2}^{2\pi V_3} (1 + \cos^2\theta) d\theta + \int_{2}^{2\pi V_3} (1 + \cos^2\theta) d\theta$$

$$= 9 \int_{2}^{2\pi V_3} (1 + \cos^2\theta) d\theta + \int_{2}^{2\pi V_3} (1 + \cos^2\theta) d\theta$$

$$= 9 \int_{2}^{2\pi V_3} (1 + \cos^2\theta) d\theta + \int_{2}^{2\pi V_3} (1 + \cos^2\theta) d\theta$$

$$= 2\pi V_3$$

$$= 9 \left[ \theta + \frac{\sin 2\theta}{2} \right]_{1/2}^{1/3} + \left[ 3\theta - 4 \sin \theta + \frac{\sin 2\theta}{2} \right]_{217/3}^{1/3}$$

(3) 
$$r=2-2\cos\theta$$
  $r'=2\sin\theta$ 
 $4 p p 0 1$ 
 $\sqrt{(2-2\cos\theta)^2 + (2\sin\theta)^2} d\theta = \sqrt{4-8\cos\theta + 4\cos^2\theta + 4\sin^2\theta} d\theta$ 
 $= \sqrt{8-8\cos\theta} d\theta = 2\sqrt{2} \sqrt{1-\cos\theta} d\theta = 2\sqrt{2} \sqrt{2\sin^2\frac{\theta}{2}} d\theta$ 

remember  $\sin^2\frac{\theta}{2} = 1-\cos\theta$ 
 $+ \sqrt{\sin^2\frac{\theta}{2}} = 1-\cos\theta$ 
 $+ \sqrt{\sin^2\frac{\theta}{2}} = 1-\cos\theta$ 
 $+ \sqrt{\sin^2\frac{\theta}{2}} = 1-\cos\theta$ 

(4) 
$$r = 1-2 \cos\theta = 1$$
 $\cos\theta = 0$ 
 $\theta = \frac{\pi}{4}, \frac{3\pi}{4}$ 

(5) Ht  $d$  VT lines  $r = \sin\theta$   $0 \le \theta \le \pi$ 

Extended by the early in parametric form.

 $X = r\cos\theta = \sin\theta\cos\theta$   $Y = r\sin\theta = \sin\theta\sin\theta = \sin\theta$ 
 $dY = \cos^2\theta - \sin^2\theta = \cos2\theta = 0$ 
 $d\theta = \cos^2\theta - \sin^2\theta = \cos2\theta = 0$ 
 $d\theta = \cos^2\theta - \sin^2\theta = \cos2\theta = 0$ 
 $d\theta = \cos^2\theta - \sin^2\theta = \cos2\theta = 0$ 
 $d\theta = 1$ 
 $d\theta = \cos^2\theta - \sin^2\theta = \cos2\theta = 0$ 
 $d\theta = 1$ 
 $d\theta = 0$ 
 $d\theta = 0$ 

#30p684

Rarson 10.2/21

9. 
$$r(t) = \langle \sin(3t), \cos(5t) \rangle$$
  
 $v(t) = r'(t) = \langle 3\cos 3t, -5\cos (5t) \rangle$   
 $a(t) = v'(t) = \langle -9\sin 3t, -75\cos 5t \rangle$ 

(i) 
$$r(t) = (4\sin t)i + (2\cos t)j$$
  
 $v(t) = r'(t) = (4\cos t)i + (-2\sin t)j$   
 $a(t) = v'(t) = (-4\sin t)i + (-2\cos t)j$ 

11. 
$$v(t) = \langle t - 3\pi c \omega_3 \pi t, 2t - \pi sin \pi t \rangle$$
 @t=0  $\langle 1,5 \rangle$   
S(t) =  $\int v(t)$ 

$$S(t) = i + 5j = 0i + j + c$$
  $C = i + 4j$   
 $S(t) = (\frac{t^2}{2} - 3\sin \pi b + 1)i + (t^2 + \cos \pi t + 4)j$ 

$$S(t) = (\frac{t^2}{2} - 3\sin \pi b + 1) \dot{c} + (t^2 + \cos \pi c + 4) j$$

b) 
$$\int_{0}^{4} (t-3\pi\cos\pi t)^{2} + (2t-\pi\sin\pi t)^{2}$$





#### Finding the Area of a Region Between Two Curves

Cardioid

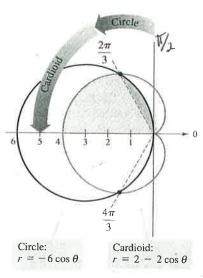
Find the area of the region common to the two regions bounded by the following curves

$$r = -6\cos\theta$$
 Circle  $r = 2 - 2\cos\theta$  Cardio

Solution Because both curves are symmetric with respect to the x-axis, you can work with the upper half-plane, as shown in Figure 10.37. The gray shaded region lies between the circle and the radial line  $\theta = 2\pi/3$ . Because the circle has coordinates  $(0, \pi/2)$  at the pole, you can integrate between  $\pi/2$  and  $2\pi/3$  to obtain the area of this

region. The region that is shaded red lies between the radial lines  $\theta=2\pi/3$  and  $\theta=\pi$ and the cardioid. Thus, you can find the area of this second region by integrating between  $2\pi/3$  and  $\pi$ . The sum of these two integrals gives the area of the common

region lying above the polar axis.



**FIGURE 10.37** 

Region between circle and radial line 
$$\theta = 2\pi/3$$

$$\frac{A}{2} = \frac{1}{2} \int_{\pi/2}^{2\pi/3} (-6\cos\theta)^2 d\theta + \frac{1}{2} \int_{2\pi/3}^{\pi} (2 - 2\cos\theta)^2 d\theta$$

$$= 18 \int_{\pi/2}^{2\pi/3} \cos^2\theta d\theta + \frac{1}{2} \int_{2\pi/3}^{\pi} (4 - 8\cos\theta + 4\cos^2\theta) d\theta$$

$$= 9 \int_{\pi/2}^{2\pi/3} (1 + \cos 2\theta) d\theta + \int_{2\pi/3}^{\pi} (3 - 4\cos\theta + \cos 2\theta) d\theta$$

$$= 9 \left[ \theta + \frac{\sin 2\theta}{2} \right]_{\pi/2}^{2\pi/3} + \left[ 3\theta - 4\sin\theta + \frac{\sin 2\theta}{2} \right]_{2\pi/3}^{\pi}$$

$$= 9 \left( \frac{2\pi}{3} - \frac{\sqrt{3}}{4} - \frac{\pi}{2} \right) + \left( 3\pi - 2\pi + 2\sqrt{3} + \frac{\sqrt{3}}{4} \right)$$

$$= \frac{5\pi}{2}$$

Finally, multiplying by 2, you conclude that the total area is  $5\pi$ .

REMARK To check the reasonableness of the result obtained in Example 3, note that the area of the circular region is  $\pi r^2 = 9\pi$ . Thus, it seems reasonable that the area of the region lying inside the circle and the cardioid is  $5\pi$ .

To see the benefit of using polar coordinates for finding the area in Example 3, consider the following integral, which gives the comparable area in rectangular coordi-

$$\frac{A}{2} = \int_{-4}^{-3/2} \sqrt{2\sqrt{1 - 2x} - x^2 - 2x + 2} \, dx + \int_{-3/2}^{0} \sqrt{-x^2 - 6x} \, dx$$

Try using a computer and numerical integration to show that you obtain the same area as found in Example 3.

#### Arc Length in Polar Form

The formula for the length of a polar arc can be obtained from the arc length formula for a curve described by parametric equations. (See Exercise 61.)

#### THEOREM 10.8 Arc Length of a Polar Curve

Let f be a function whose derivative is continuous on an interval  $a \le \theta \le \beta$ . The length of the graph of  $r = f(\theta)$  from  $\theta = \alpha$  to  $\theta = \beta$  is

$$s = \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} d\theta = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

# #3

# **EXAMPLE 4** Finding the Length of a Polar Curve

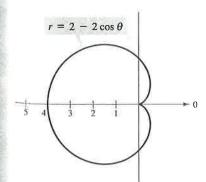
Find the length of the arc from  $\theta = 0$  to  $\theta = 2\pi$  for the cardioid

$$r = f(\theta) = 2 - 2\cos\theta$$

as shown in Figure 10.38.

**Solution** Because  $f'(\theta) = 2\sin\theta$ , you can find the arc length as follows.

$$s = \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} d\theta$$
 Formula for arc length 
$$= \int_{0}^{2\pi} \sqrt{(2 - 2\cos\theta)^2 + (2\sin\theta)^2} d\theta$$
$$= 2\sqrt{2} \int_{0}^{2\pi} \sqrt{1 - \cos\theta} d\theta$$
$$= 2\sqrt{2} \int_{0}^{2\pi} \sqrt{2\sin^2\frac{\theta}{2}} d\theta$$
$$= 4 \int_{0}^{2\pi} \sin\frac{\theta}{2} d\theta \qquad \sin\frac{\theta}{2} \ge 0 \text{ for } 0 \le \theta \le 2\pi$$
$$= -8\cos\frac{\theta}{2} \Big]_{0}^{2\pi}$$
$$= 8 + 8$$



REMARK When applying the arc

length formula to a polar curve, be sure that the curve is traced out only

once on the interval of integration. For

instance, the rose given by  $r = \cos 3\theta$  is traced out once on the interval

 $0 \le \theta \le \pi$ , but is traced out twice on

the interval  $0 \le \theta \le 2\pi$ .

FIGURE 10.38
The arc length of this cardioid is 16.

In the fifth step of the solution, it is legitimate to write

$$\sqrt{2\sin^2(\theta/2)} = \sqrt{2}\sin(\theta/2)$$

= 16

rather than  $\sqrt{2\sin^2(\theta/2)} = \sqrt{2} |\sin(\theta/2)|$  because  $\sin(\theta/2) \ge 0$  for  $0 \le \theta \le 2\pi$ .

REMARK Using Figure 10.38, you can determine the reasonableness of this answer by comparing it with the circumference of a circle. For example, a circle of radius  $\frac{5}{2}$  has a circumference of  $5\pi \approx 15.7$ .

# Slope and Tangent Lines

To find the slope of a tangent line to a polar graph, consider a differentiable function given by  $r = f(\theta)$ . To convert to polar form, use the parametric equations

$$x = r\cos\theta = f(\theta)\cos\theta$$
 and  $y = r\sin\theta = f(\theta)\sin\theta$ .

Using the parametric form of dy/dx given in Theorem 10.1, you have

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{f(\theta)\cos\theta + f'(\theta)\sin\theta}{-f(\theta)\sin\theta + f'(\theta)\cos\theta}$$

which establishes the following theorem.

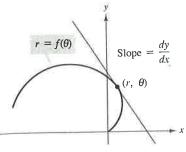


FIGURE 10.27
Tangent line to polar curve.

### THEOREM 10.5 Slope in Polar Form

If f is a differentiable function of  $\theta$ , then the *slope* of the tangent line to the graph of  $r = f(\theta)$  at the point  $(r, \theta)$  is

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{f(\theta)\cos\theta + f'(\theta)\sin\theta}{-f(\theta)\sin\theta + f'(\theta)\cos\theta}$$

provided that  $dx/d\theta \neq 0$  at  $(r, \theta)$ . (See Figure 10.27.)

From Theorem 10.5, you can make the following observations.

- 1. Solutions to  $\frac{dy}{d\theta} = 0$  yield horizontal tangents, provided that  $\frac{dx}{d\theta} \neq 0$ .
- 2. Solutions to  $\frac{dx}{d\theta} = 0$  yield vertical tangents, provided that  $\frac{dy}{d\theta} \neq 0$ .

If  $dy/d\theta$  and  $dx/d\theta$  are simultaneously 0, then no conclusion can be drawn about tangent lines.

# EXAMPLE 5 Finding Horizontal and Vertical Tangent Lines

Find the horizontal and vertical tangent lines of  $r = \sin \theta$ ,  $0 \le \theta \le \pi$ .

**Solution** Begin by writing the equation in parametric form.

$$x = r\cos\theta = \sin\theta\cos\theta$$

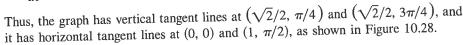
and

$$y = r \sin \theta = \sin \theta \sin \theta = \sin^2 \theta$$

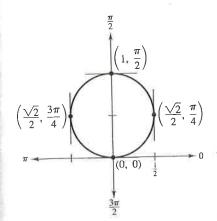
Next, differentiate x and y with respect to  $\theta$  and set each derivative equal to 0.

$$\frac{dx}{d\theta} = \cos^2 \theta - \sin^2 \theta = \cos 2\theta = 0 \quad \to \quad \theta = \frac{\pi}{4}, \frac{3\pi}{4}$$

$$\frac{dy}{d\theta} = 2\sin\theta\cos\theta = \sin 2\theta = 0 \quad \rightarrow \quad \theta = 0, \frac{\pi}{2}$$



 $(\Upsilon_1 \oplus)$ 



**FIGURE 10.28** Horizontal and vertical tangent lines of  $r = \sin \theta$ .

27. 
$$x = \sec \theta$$
,  $y = \tan \theta$ 

Horizontal tangents:

$$\frac{dy}{d\theta} = \sec^2 \theta \neq 0; \text{ none}$$

Vertical tangents:

$$\frac{dx}{d\theta} = \sec \theta \tan \theta = 0$$
 when  $\theta = 0$ ,  $\pi$ .

Points: (1, 0), (-1, 0)

28. 
$$x = \cos^2 \theta$$
,  $y = \cos \theta$ 

Horizontal tangents:

$$\frac{dy}{d\theta} = -\sin\theta = 0$$
 when  $\theta = 0$ ,  $\pi$ .

Since  $\frac{dx}{d\theta} = 0$  at these values, exclude them.

Vertical tangents:

$$\frac{dx}{d\theta} = -2\cos\theta\sin\theta = 0 \text{ when } \theta = \frac{\pi}{2}, \frac{3\pi}{2}.$$

(Exclude 0,  $\pi$ .)

Point: (0, 0)

29. 
$$x = e^{-t} \cos t$$
,  $y = e^{-t} \sin t$ ,  $0 \le t \le \frac{\pi}{2}$ 

$$\frac{dx}{dt} = -e^{-t}(\sin t + \cos t), \quad \frac{dy}{dt} = e^{-t}(\cos t - \sin t)$$

$$s = \int_0^{\pi/2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$= \int_0^{\pi/2} \sqrt{2e^{-2t}} \, dt = -\sqrt{2} \int_0^{\pi/2} e^{-t} (-1) \, dt = \left[ -\sqrt{2} \, e^{-t} \right]_0^{\pi/2} = \sqrt{2} (1 - e^{-\pi/2}) \approx 1.12$$

30. 
$$x = t^2$$
,  $y = 4t^3 - 1$ ,  $-1 \le t \le 1$ ,  $\frac{dx}{dt} = 2t$ ,  $\frac{dy}{dt} = 12t^2$ 

$$s = \int_{-1}^{1} \sqrt{4t^2 + 144t^4} dt = 2 \int_{0}^{1} 2t \sqrt{1 + 36t^2} dt = \frac{1}{18} \int_{0}^{1} (1 + 36t^2)^{1/2} (72t) dt = \left[ \frac{1}{27} (1 + 36t^2)^{3/2} \right]_{0}^{1} \approx 8.30$$

31. 
$$x = t^2$$
,  $y = 2t$ ,  $0 \le t \le 2$ 

$$\frac{dx}{dt} = 2t$$
,  $\frac{dy}{dt} = 2$ ,  $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = 4t^2 + 4 = 4(t^2 + 1)$ 

$$s = 2\int_0^2 \sqrt{t^2 + 1} \, dt = \left[ t\sqrt{t^2 + 1} + \ln\left| t + \sqrt{t^2 + 1} \right| \right]_0^2 = 2\sqrt{5} + \ln\left(2 + \sqrt{5}\right) \approx 5.916$$

32. 
$$x = \arcsin t$$
,  $y = \ln \sqrt{1 - t^2}$ ,  $0 \le t \le \frac{1}{2}$ 

$$\frac{dx}{dt} = \frac{1}{\sqrt{1 - t^2}}, \quad \frac{dy}{dt} = \frac{1}{2} \left( \frac{-2t}{1 - t^2} \right) = -\frac{t}{1 - t^2}$$

$$s = \int_0^{1/2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$= \int_0^{1/2} \sqrt{\frac{1}{(1-t^2)^2}} dt = \int_0^{1/2} \frac{1}{1-t^2} dt = \left[ -\frac{1}{2} \ln \left| \frac{t-1}{t+1} \right| \right]_0^{1/2} = -\frac{1}{2} \ln \left( \frac{1}{3} \right) = \frac{1}{2} \ln(3) \approx 0.549$$